Exercise 34

Find equations of the tangent line and normal line to the given curve at the specified point.

$$
\begin{equation*}
y=\frac{2 x}{x^{2}+1} \tag{1,1}
\end{equation*}
$$

Solution

Start by finding the slope of y at $x=1$. Evaluate the derivative using the quotient rule.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(\frac{2 x}{x^{2}+1}\right) \\
& =\frac{\left[\frac{d}{d x}(2 x)\right]\left(x^{2}+1\right)-\left[\frac{d}{d x}\left(x^{2}+1\right)\right](2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{(2)\left(x^{2}+1\right)-(2 x)(2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Evaluate it at $x=1$.

$$
y^{\prime}(1)=0
$$

Therefore, the equation of the tangent line with slope 0 and the equation of the normal line with slope $-\infty$ that go through $(1,1)$ are respectively

$$
y-1=0(x-1) \quad \text { and } \quad x=1 .
$$

